Torque test measurement in segmental bone defects using porous calcium phosphate cement implants.

نویسندگان

  • Henriette C Kroese-Deutman
  • Joop G C Wolke
  • Paul H M Spauwen
  • John A Jansen
چکیده

This study was performed to assess the bone healing supporting characteristics of porous calcium phosphate (Ca-P) cement when implanted in a rabbit segmental defect model as well as to determine the reliability of torque testing as a method to verify bone healing. The middiaphyseal radius was chosen as the area to create bilaterally increasing defect sizes (5, 10, and 15 mm), which were either filled with porous Ca-P cement or left open as a control. After 12 weeks of implantation, torque test measurements as well as histological and radiographic evaluation were performed. In two of the open 15 mm control defects, bone bridging was visible at the radiographic and histological evaluation. Bone was observed to be present in all porous Ca-P cement implants (5, 10, and 15 mm defects) after 12 weeks. No significant differences in torque measurements were observed between the 5 and 10 mm filled and open control defects using a t-test. In addition, the mechanical strength of all operated specimens was similar compared with nonoperated bone samples. The torsion data for the 15 mm open defect appeared to be lower compared with the filled 15 mm defect, but no significant difference could be proven. Within the limitation of the study design, porous Ca-P cement implants demonstrated osteoconductive properties and confirmed to be a suitable scaffold material in a weight-bearing situation. Further, the used torque testing method was found to be unreliable for testing the mechanical properties of the healed bone defect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model.

Calcium phosphate (Ca-P) cement is a well established material for bone repair. The bone biological properties of Ca-P cement can even be further improved by creating porosity in the material. The current study aimed on the evaluation of the osteoconductive behavior of porous Ca-P cement. Therefore, circular defects (6, 9, and 15 mm in diameter) were created in the cranium of 3 months old rabbi...

متن کامل

Effect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement

In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of   wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...

متن کامل

Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size.

Calcium phosphate cement (CPC) sets in situ and forms apatite with excellent osteoconductivity and bone-replacement capability. The objectives of this study were to formulate an injectable tetracalcium phosphate-dicalcium phosphate cement (CPC(D)), and investigate the powder/liquid ratio and needle-size effects. The injection force (mean +/- SD; n = 4) to extrude the paste increased from (8 +/-...

متن کامل

Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate.

Calcium phosphate cement (CPC) sets in situ with intimate adaptation to the contours of defect surfaces, and forms an implant having a structure and composition similar to hydroxyapatite, the putative mineral in teeth and bones. The objective of the present study was to develop an injectable CPC using dicalcium phosphate dihydrate (DCPD) with a high solubility for rapid setting. Two agents were...

متن کامل

Mandibular segmental defect regenerated with macroporous biphasic calcium phosphate, collagen membrane, and bone marrow graft in dogs.

OBJECTIVE To reconstruct segmental mandibulectomy using calcium phosphate ceramics and collagen membrane with a delayed bone marrow grafting in experimental animals. DESIGN Defects of segmental mandibulectomy were filled with calcium phosphate granules and wrapped with a collagen membrane in 4 dogs and left empty as a control in 2 dogs. Two months later, a bone marrow graft was injected into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part C, Methods

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2010